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Abstract:  Using new C,-symmetric chiral ketones 4 and 6 as precursors for chiral
dioxiranes generated in situ, the asymmetric epoxidation of olefins has been achieved in
moderate ee. © 1997 Elsevier Science Ltd

Enantioselective epoxidation of olefins bearing no functionality to precoordinate to the catalyst
represents one of the most useful synthetic transformations for the introduction of functionality into
organic molecules. In this respect, various metal complex catalysts have been developed and the
most spectacular advances were recently achieved by Jacobsen with the introduction of Mn(III)-salen
complex catalysts.! In contrast with metal complex catalysts, there were no efficient non-metal
catalysts for the asymmetric epoxidation of unfunctionalized olefins. Therefore, much effort has been
directed towards the development of non-metal catalysts for this purpose.? Amongst these, the ketone-
Oxone® epoxidation has received a great deal of attention, because it is a catalytic process and in
particular asymmetric epoxidation using chiral ketones is potentially very important.** However, the
structure of the reactive intermediate responsible for the epoxidation of olefins using ketone-Oxone®
still remains a controversy. Experiments using '80 labelled KHSOs have provided evidence that a
dioxirane intermediate is involved.” Whereas, an experiment using 80 labelled ketone suggests that a
dioxirane is not responsible for alkene epoxidation using ketone-Oxone® in a biphasic solvent system
(e.g. CH,Cl,-H,0).° For the development of efficient chiral ketones, understanding of the nature of
the reactive oxidizing species in reaction medium may be important. Recently, we discovered that
a dioxirane is reactive intermediate for alkene epoxidation using racemic 80 labelled ketone 4 and
Oxone in the CH;CN-H, 0 solvent system.” Based on this result, we assumed that optically pure ketone
4 could be a promising catalyst for asymmetric epoxidation of unfunctionalized olefins. This ketone
is electronically activated by &,0’-oxygen atoms and the carbonyl group is not hindered sterically.
Therefore, it is expected that ketone 4 is highly active for epoxidation. Moreover, enantiomerically
pure ketone 4 possessing C,-symmetry and rigid conformation might have potential for asymmetric
epoxidation. Here we report our results for asymmetric epoxidation of unfunctionalized olefins using
new C,-symmetric chiral ketone catalysts 4 and 6.

The chiral ketone 4 was simply synthesized by the reaction of (R)-(+)-1,1’-bi-2-naphthol (1) with
3-chloro-2-chloromethyl-1-propene, followed by ozonolysis as shown in Scheme 1. The structure of
4 was confirmed by single crystal X-ray structure analysis (Figure 1). X-Ray analysis revealed that
ketone 4 indeed has a C>-symmetric structure: the keto group lies on C; axis of the molecule and the
dihedral angle of the two naphthalene rings is 71°. However, the reaction of (5,5)-(—)-1,2-diphenyl-
1,2-diol (2) with 3-chloro-2-chloromethyl-1-propene gave a mixture of olefin 5 as a colorless viscous
oil and dimeric olefin 7 as a white solid. The ozonolysis of 5 and 7 gave the ketone 6 and 8°
respectively. The structure of ketone 8 was also determined by X-ray single crystal structure analysis.

* Corresponding author.
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Figure 1. X-Ray structure of ketone 4.

In order to examine the catalytic efficiency of ketones 4, 6 and 8, the epoxidation reactions of trans-
stilbene and trans-B-methyl styrene were carried out in a homogeneous CH;CN-H,O solvent system
under same conditions reported in the literature® and the results are summarized in Table 1.

In a 1:1 ketone:olefin ratio at room temperature, epoxidation catalyzed by ketones 4 and 6 proceeded
within 1 h, and afforded trans-stilbene oxide with moderate ee in good yields (entries 1 and 3, entries 6
and 7). The enantioselectivities were increased by decreasing the reaction temperature but the reaction
rates were decreased. For instance, when the epoxidation was carried out at room temperature, the
reaction was completed within 1 h with 30% ee (entry 3). Whereas, the reaction was completed in
5 h at 0°C, but the enantioselectivity was increased to 59% ee (entry 4). However, the temperature
dependency of the enantioselectivity in ketone 4 is not as much as in ketone 6 (entries 1 and 2).
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Table 1. Asymmetric epoxidation of unfunctionalized olefins catalyzed by ketones 4 and 6*

catalyst

Ph
= Oxone/NaHCO; ph\&

R CH;CN-H,;0 R

NaEDTA
entry catalyst R= temp. time yield (%)° ee (%)° config?
1 4 Ph n 1h 90 20 S S
2 4 Ph 0°c 5h 79 26 S, S
3 6 Ph n 1h 73 30 M
4 6 Ph 0°C 5h 72 59 S S
5 8 Ph n 2 days nd. nd. nd.
6 4 CH; rn 1h 95 29 S S
7 6 CH, n 1h 61 20 S, S

2 Unless otherwise indicated, all the epoxidation reactions were carried out with substrate (1 equiv), ketone (1
equiv), Oxone (5 equiv), and NaHCO3 (15.5 equiv) in CH3CN-aqueous EDTA (4 x 104 M) (~1.5:1).bGC
yields. ¢ Determined by !H NMR using chiral shift reagent Eu(hfc)3. ¢ The configuration of predominant
enantiomer is given.10

Surprisingly, however, the ketone 8 exhibited very low catalytic activity. For example, under the
same reaction conditions only trace amounts of frans-stilbene oxide were detected after 2 days. It is
not clear yet why ketone 8 showed poor catalytic activity.

On the bases of the present and reported results,* symmetricity and the rigid ring conformation
of the chiral dioxirane generated in situ and the distances between the chiral center and one of the
diastereotopic oxygen atoms of the dioxirane may be important to achieve high enantioseletivities.
Therefore, it seems the structure of chiral dioxirane and of the prochiral alkene have influence on the
enantioselectivity. Our efforts are continuing into the design of chiral ketones having suitable structural
features to increase enantioselectivities.

Experimental
(R)-3-Methylene-3,4-dihydro-2H-dinaphtho(2,1-f:1,2-h][ 1,5 Jdioxonine (3)

To a solution of (R)-(+)-1,1"-bis-2-naphthol (5.0 g, 17.46 mmol) in dried DMF (150 mL), 60%
NaH in mineral oil (1.75 g, 43.65 mmol) was added at 0°C under N3. After stirring for 1 h at room
temperature, 3-chloro-2-chloromethyl-1-propene (2.18 g, 17.46 mmol) was added, and the mixture
was stirred for 1 h at 60°C. The reaction mixture was allowed to cool to room temperature, poured into
saturated NH4C1 aqueous solution, and extracted with ethyl acetate. The organic layer was dried over
Na,S04. After evaporation of the solvent, the residue was crystallized with ethyl ether to give clefin
3 (4.32 g, 73.1%). mp 188-190°C; []®, —384.7 (c 1.04, CHCl3); 'H NMR (300 MHz, CDCl;) &
4.76 (s, 4 H, OCHy-), 5.21 (s, 2 H, C=CH,), 7.1-8.0 (m, 12 H, ArH); '*C NMR (75.5 MHz, CDCl;)
5 154.99, 142.02, 133.49, 130.57, 129.69, 128.18, 126.40, 126.38, 124.42, 123.85, 121.63, 119.37,
76.08; EIHRMS m/e calcd for C24H;130;: 338.1307. Found: 338.1305. Anal. Calcd for Cy4H;303: C,
85.18; H, 5.36. Found: C, 84.8; H, 5.42.
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(R)-3,4-Dihydro-2H-dinaphtho[2,1-f:1,2-h][ 1,5 ]dioxonin-3-one (4)

A solution of olefin 3 (4.17 g, 12.32 mmol) in CH,Cl; (150 mL) was ozonized at —78°C by passing
the O3/0;, stream until the solution was saturated with O;. Excess O3 was removed by O, stream, and
triphenyl phosphine (5.46 g, 20.81 mmol) was added portionwise to the reaction mixture. After stirring
for 3040 min at —78°C, the mixture was allowed to warm to room temperature. The solvent was
evaporated, and the residue was purified chromatographically on silica gel (ethyl acetate/hexane=1:2
as eluent) to give (R)-(+)-1,1'-bi-2-naphthol ketone 4 (2.39 g, 56.9%). If necessary, this material
can be recrystallized from ethyl acetate to furnish single crystals. mp 196-198°C; [&]®p —545.9 (¢
1.03, CHCl;); '"H NMR (300 MHz, CDCl;) § 4.95 (AB q, /=16.8 Hz, 4 H, OCH,-), 7.2-8.0 (m, 12
H, ArH); 3C NMR (75.5 MHz, CDCl3) § 208.72, 156.32, 133.73, 131.07, 128.81, 127.27, 127.11,
125.33, 121.76, 118.77, 79.87; IR (KBr) 1718.0 cm™!; EIHRMS m/e calcd for Ca3H603: 340.1099.
Found: 340.1094. Anal. Calcd for C»3H 603: C, 81.16; H, 4.74. Found: C, 80.7; H, 4.78.

Crystal data: CpHjOs3, orthorhombic, P2,2;2;, a=8.976(4), b=12.150(3), c=15.566(3) A,
V=1697.5(8) A3, Z=4, D.=1.332 g/em?, F(000)=712, A(MoK®)=0.71073 A, 1131 Independent
reflections with /o (I)=2.0 were used on the analysis. R=0.059. Data for crystallographic analysis
were measured on an Enraf-Nonius CAD-4 diffractometer using Mo radition and @-2 scans in the
range of 8; 1.79<0<24.96. Structure was solved by direct methods and refined by least squares using
the SHEL-X.

(25,38 )-6-Methylene-2,3-diphenyl- 1,4-dioxepane (5) and (2S,3S,9S, 10S)-6, 1 3-dimethylene-2,3,9,10-
tetraphenyl-1,4,8,11-tetraoxacyclotetradecane (7)

To a solution of (S,$)-(—)-stilbenediol (5.0 g, 23.33 mmol) in dried DMF (150 mL), 60% NaH in
mineral oil (2.33 g, 58.34 mmol) was added at 0°C under N;. After stirring for 1 h at room temperature,
3-chloro-2-chloromethyl-1-propene (2.92 g, 23.33 mmol) was added, and the mixture was stirred for
1 h at 60°C. The reaction mixture was poured into saturated NH4Cl aqueous solution and extracted
with ethyl acetate. The organic layer was dried over Na;SO4. After evaporation of the solvent, the
olefin § (Rg=0.65) and 7 (R¢=0.58) were separated by column chromatography on silica gel (ethyl
acetate/hexane=1:4).

Olefin 5 (2.02 g, 32.5%) as a viscous oil: [&]®p —78.1 (¢ 3.17, CHCl3); '"H NMR (300 MHz,
CDCl3) 8 4.54 (s, 2 H), 4.71 (AB q, J=14.4 Hz, OCH,, 4 H), 5.07 (s, 2 H), 7.0-7.3 (m, ArH, 10
H); 3C NMR (75.5 MHz, CDCl3) § 148.00, 137.44, 126.39, 126.13, 125.80, 107.30, 90.55, 72.65;
EIHRMS m/e caled for CigH 305: 266.1306. Found: 266.1306.

Olefin 7 (1.71 g, 27.5%) as a white solid: mp 120-124°C; [a]®p —18.57 (¢ 1.02, CHClL;); 'H
NMR (200 MHz, CDCl;3) & 4.26 (q, J=11.4 Hz, 4 H, OCH,-), 4.70 (s, PhCH, 2 H), 5.07 (s, CH,—, 2
H), 7.0-7.3 (m, ArH, 10 H); '3C NMR (50.3 MHz, CDCl;) & 142.35, 137.41, 126.14, 114.15, 84.19,
69.10; Anal. Calcd for (C1gH;30,)2: C, 81.17; H, 6.81. Found: C, 81.0; H, 6.81.

(28S,3S)-2,3-Diphenyl-1,4-dioxepan-6-one (6)

Olefin 5 (2.0 g, 7.51 mmol) was ozonized as above described to give chiral ketone 6 (1.45 g, 71.9%)
as a colorless oil after purification by column chromatography (ethyl acetate/hexane=2:1): [a]®p
—136.2 (¢ 0.22, CHCl;3); '"H NMR (200 MHz, CDCl3) § 4.56 (ABq, J=16.5 Hz, OCH,-, 4 H), 4.64
(s, 2 H, PhCH), 6.9-7.3 (m, Ar H, 10 H); '*C NMR (50.3 MHz, CDCl3) & 211.93, 138.45, 130.07,
128.66, 127.71, 93.65, 77.99; IR (neat) 1728 cm~!; CI-MS (m/z) 269 (M*+1).

(28,3S,98,108)-2,3,9,10-Tetraphenyl-1,4,8, 11 -tetraoxacyclotetradecane-6, 1 3-dione (8)

Olefin 7 (1.51 g, 1.89 mmol) was ozonized as above described to give chiral ketone 8 (1.04 g,
68.4%) as a white solid after purification by column chromatography (ethyl acetate/hexane=2:1): mp
178-183°C; [«]¥p —0.65 (¢ 1.23, CHCl3); 'H NMR (300 MHz, CDCl3) § 4.38 (ABq, J=15.8 Hz,
OCH;—, 4 H), 4.69 (s, 2 H, PhCH), 7.0-7.2 (m, Ar H, 10 H); '3C NMR (50.3 MHz, CDCl3) § 203.72,
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135.68, 126.49, 126.30, 125.99, 86.74, 72.01; IR (neat) 1732 cm™!; Anal. Caled for (C7H,603)2: C,
76.09; H, 6.01. Found: C, 76.1; H, 6.01.
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